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SUPERSONIC FLOW OVER A WING AT HIGH ATTACK ANGLES 

V. N. Golubkin UDC 533.6.011.5 

The thin shock layer method [i] is applied to the problem of supersonic gas flow with 
Mach number M~ >> 1 over the windward surface of a thin wing. This method makes use of the 
significant increase in gas density at the compression discontinuity, together with the cor- 
responding small parameter E, which is equal to the ratio of the densities at the disconti- 
nuity. Consideration of the problem as g + 0 permits approximate consideration of the effect 
of the real physicochemical properties ofithe gas at high temperatures and determines the 
specifics of the problem's mathematical formulation and solution, as compared to theories 
in which together with the small parameter M~ I geometric parameters are employed (attack 
angle ~, relative wing thickness d, elongation I), which vary over various ranges [2, 3]. 

If d = O(1) (for example, [3-6]) or d < O(i), but exceeds the compressed layer thick- 
ness in order of magnitude (for example, [7, 8]), then in the main "Newtonian" approxima- 
tion the form of the discontinuity coincides with the body form, and the problem consists of 
finding subsequent approximations. 

The most interesting and mathematically complex case is that in which the wing thick- 
ness is small and coincides in order of magnitude with the compressed layer thickness, and 
the form of the compression discontinuity must be determined in the process of solution. 
This ease will be cQnsidered below. For flow over a thin wing of small elongation (d = 
O(~tan~), X = O(e */2 tana), ~ = O(i), cos a=O(1), when e ~ 0) the supersonic law of planar sec- 
tions for thin bodies at large attackan~les [2] is valid, which law inconjunctionwiththe limiting 
transition~ + 0 reduces the problem to calculation of a two-dimensional nonsteady-state flow 
in a plane perpendicular to the wing axis and moving with a velocity V~ cos e [9, I0]. The 
problem of flow over a plane wing of small elongation at attack angles close to 90 ~ (cos ~ = 
O(s)) proves equivalent to the two-dimensional problem of stationary flow over a plate located 
perpendicular to the incident flow [ii]. For the intermediate attack angle range (cos ~ = 

I/2 O(s ))such an equivalence is valid in the region adjacent to the compression discontinuity, 
but in the low velocity wall layer change along the chord must be considered. 

For flow over a thin wing of finite extent (d = 0(~ tan ~), I = O(i)) at an attack angle 
= O(i) (cos ~ = O(i) as E + 0), the discontinuity adjoins the edge and in the fundamental 

approximation of the thin shock layer method the well-known law of bands is valid [12], per- 
mitting independent calculation in each plane along the wing chord of a two-dimensional flow, 
which in light of the unsteady state analogy [i] is equivalent to a one-dimensional unsteady 
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state flow. This law is inapplicable only in narrow regions with angular size of the order 
of the Mach angle in the compressed layer (c I/2 tan ~) encompassing the ends of the wing or 
departing from cusps on the leading edge, where the three-dimensional problem must be solved 

[13]. 

The present study will consider flow over a thin wing of finite extent (d = O(gl/=), % = 
0(i)) at large attack angles close to 90 ~ (c6se= O(~I/2)). In this case although the compression 
discontinuity is adjacent to the leading edge, or at least, the tip, the spatial flow is described 
by a significantly three-dimensional system of equations, which in principle distinguishes 
this flow regime from those studied in [9-12]. As in [5, 6, I0] an analytical solution is 
obtained on the basis of the fundamental property of high-density gas flows, namely the con- 
servation of the vorticity component directed along the flow over the length of a flow line. 

i. We will consider supersonic flow over a wing of finite extent at attack angles close 

to 90~ 

= a / 2 - - A , ,  0 < A , < < I .  (i.i) 

We introduce a rectangular Cartesian coordinate system Oxyz fixed to the wing with origin at 
the tip of the wing (see Fig. i). We will assume the wing to be thin, and that its surface 
is close to the base plane y = 0, from which the attack angle is measured. We will use the 
thin shock layer method of [i] to solve the problem. As a result of intense gas compression 
in the leading compression discontinuity during supersonic flow over the windward wing sur- 
face the discontinuity surface y = ys(x, z) will also be close to the base plane, i.e., the 
derivatives 

Oy~"Ox, @s /Oz<<l .  (1.2) 

Assuming the gas to be ideal with constant heat capacity ratio n and considering Eqs. 
(1.2), (i.i), we write the small parameter of the thin shock layer method, equal to the den- 
sity ratio at the discontinuity, in the form 

•  2 
e = _ _ u + l  + (•  (1 .3 )  

Transforming to the limit as ~ § 0 or ~ § I, M~ § ~, we will assume that 

m = i ( u _  t) Mi = 0 (t). (1 .4 )  

To evaluate the orders of the gas dynamic function perturbations we will consider the solu- 
tion of the auxiliary problem of flow over an infinite arrowlike wing, located in the plane 
y = 0, at the angle of attack of Eq. (i.i). The compression discontinuity attached to the 
leading edge is described by the equation ys(x, z) = Y(x -- z tanA), where A is the sagittal 
angle, tanh = 0(i); Y << 1 is the still undefined scale of the derivatives ~yx/~X = Y, ~Ys/ 
gz = --Y tanA. Using the relationship on the compression discontinuity, given conditions(l.l)- 
(1.4), we find an expression for the vertical component of the velocity v, which in view of 
the impermeability of the wing vanishes. Hence, considering only terms of the least order 
of smallness, we obtain 

v/V ~ = A , Y  - -  y 2  __ y 2  tg~ A - -  ~ + . . .  = 0. ( 1 . 5 )  

The most general case is that in which all terms of Eq. (1.5) are of identical order of small- 
ness as s § 0. Therefore, we take 

y N A ,  N 1/2. (i. 6) 

The quantity A = A,/~ #2 = (7/2 -- a)g @ will be the similarity parameter. The solution of 
quadratic equation (1.5) corresponding to the weak branch of the discontinuity has the form 

z 

~c' szjsc~ 

Fig. i 
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Y/81/'~ = (i /2)[A ~ V A  2 - -  4(1 + tg 2 A) ] cos ~ A. 

The flow regime w~th discontinuity attached to edge is realized for A i> 2 and saggital angles 
A ~ arctan((i/2)/~--~. 

From the conditions on the discontinuity with consideration of Eq. (1.6) we find the 
order of the components of the velocity, the pressure, and density, 

u . - . ,w . - - , e l / 2V~ ,  v,-..,eVoo, ( p - - p = ) / ( p o o V ~ ) - - t N s ,  p ~ / p N e .  ( 1 . 7 )  

2. We will now consider the fundamental problem of flow over the windward surface of a 
wing at large angles of attack. To study the flow structure in the compressed layer we intro- 
duce dimensionless variables having the order of unity as ~ + 0: 

X ~ = X/C~ yO = y/cgll~, z o = z/c, ( 2 . 1 )  

where c is the characteristic longitudinal dimension (see Fig. i). The wing thickness, mea- 
sured from the base plane y= 0, will Be assumed to be of the same order of magnitude as the 
thickness of the shock layer: d ~ cE z/2. The equation of the wing surface has the form 

Yb = dmax/(x ~ z~ ( 2 . 2 )  

We specify the equation of the projection of the wing's leading edge on the base plane in 
the form ]z] = SZe(X). We will assume that the estimated values of Eq. (1.7) are valid over 
the entire compressed layer and introduce the following expansions of the unknown variables: 

u/Voo = eU2u~176 yO z o) _}_ . . . . .  v/Vo~ 8v~176 yOj~ zo) _t_ . . . .  ( 2 . 3 )  

~ / v ~  = d / ~  o (~o, y. ~o) + , . . ,  ( p _  p~.) / (~|  +~p.  (xo~ yo~ '~o)+. . . ,  

Ooo/p = e - -  e2(l q- pO) __ [me2/(m q_ l)](u02 + too2) + . . .~ 

Y~ = cel/~S(x~ z~ q- . . . .  Yb = cel/2F( x~ z~ �9 

Substitution of Eqs. (2.1)-(2.3) in the exact gas-dynamics equations and boundary conditions 
on the compression discontinuity and wing surface in the limit e § 0 with conditions (I.I), 
(1.4), (1.6) in the fundamental approximation leads to formulation Of the following problem 
(superscripts are omitted): 

ux -~- v u -4-Wz = 0; ( 2 . 4 )  

UUx + vuy + Wuz = 0; ( 2 . 5 )  

uwx ~- vw u -~- wwz = 0; ( 2 . 6 )  

uv x -~- vvy -4- my z = --py;  ( 2 . 7 )  

u~ A S i ,  p~ 2 A S  x ( 2 . 8 )  x, w~ S~, v~ A S ~ - -  S 2 S 2 

S 2 2 x - -  S ~ - -  t - -  A2; 

% = t%F~ q- wbFz, f = A]~ 0 ~< x~<  i~ ( 2 . 9 )  

Izl <~ ~zAx) (zr = l ) ,  

w h e r e  u s - u [ x ,  S ( x ,  z ) ,  z ] ;  u b - -  u [ x ,  F ( x ,  z ) ,  z ] ,  e t c .  I n  t h e  f u n d a m e n t a l  a p p r o x i m a t i o n  o f  
th,e t h i n  s h e c k  l a y e r  m e t h o d  f l o w  o v e r  a w i n g  o f  f i n i t e  e x t e n t  a t  h i g h  a t t a c k  a n g l e s  i s  d e -  
s c r i b e d  by a t h r e e - d i m e n s i o n a l  n o n l i n e a r  s y s t e m  Of e q u a t i o n s .  From Eqs .  ( 2 . 4 ) - ( 2 . 9 )  we h a v e  
t h e  s i m i l a r i t y  t aw:  For  f l o w  o v e r  w i n g s  o f  s i m i l a r  f o r m  a t  h i g h  a t t a c k  a n g l e s  t h e  d i m e n s i o n -  
l e s s  g a s - d y n a m i c  f u n c t i o n s  d e n o t e d  by t h e  s u p e r s c r i p t  0 i n  Eq. ( 2 . 3 )  depend  on t h e  d i m e n s i o n -  
l e s s  c o o r d i n a t e s  o f  Eq. ( 2 . 1 )  and t h e  s i m i l a r i t y  p a r a m e t e r s :  

A = (~ /2  ~ ~)/el/2, A = dmax/cell~ f] " s/c~ 

where 2s is the extent of the wing. 

For the normal wing force coefficient c N (without consideration of the negligible con- 
tribution of the downwind surface) we have the similarity law 

1 'Qze 

(ely - -  2 - -  2 /•  --  C (A, A, ~)~ where C = 2 S J' pdxdz:  
0 0 

In addition, the correction to the constant density value p = g-~p~ also depends on the param- 
eter m of Eq. (1.4). 
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Boundary problem (2.4)-(2.9) describes flow in the entire compressed layer from the 
compression discontinuity to the wing tip. The discontinuity may be attached to the leading 
edge or detached. With consideration of thickness, in analogy to section 1 we obtain a condi- 
tion for existence of a discontinuity attached to the edge in the form 

[F~--(A--  F~)f~z;]2>~4(I + f~2z;Z), 

e ~ Fx x, ~Ze(X)] where F e - Fx[x, ~Ze(X)]" F z 
X 

In the case in which the discontinuity is detached from the surface, as in [ii], a re- 
gion of slow flow appears near the surface, where the order of magnitude of the velocities 
differs from Eq. (1.7) and which must be analyzed separately. The thickness of the shock 
layer, determined by matching the solution in this region with the external region in the 
main portion of t le layer, will be somewhat larger than e~2in order of magnitude. 

3. We will note a number of properties of flows described by Eqs. (2.4)-(2.7) which will 
be of further use. We introduce notation for an operator indicating differentiation along 

a flow line 

D ~ uO/Ox + vO/Oy + wO/Oz. 
Equations (2.5), (2.6), having the form Du = Dw = 0, show that the longitudinal and lateral 
velocity components are constant along the flow lines. It follows from this that the projec- 
tions of the flow lines onto the base plane y = 0 are straight lines with a slope dz/dx = 
w/u, i.e., the flow lines are plane curves lying in planes orthogonal to the base plane. 

The expression of the component of the vorticity in the direction of the flow has the 
form 

U 2 

Equations (2.4)-(2.6) show that in the basic approximation of the thin shock layer method the 
vorticity component directed along the flow is constant along the flow lines. Consequently, 

D[(w/u)u] = O. (3 .1 )  

This fundamental conservation property will be used in the future for integration of system 

(2.4)-(2.7). 

We will study the characteristic properties of this system. Let ~(x, y, z) = const 
be the equation of the characteristic surface. Writing the equations of the characteristics, 

�9 f~2~ 2 we obtain v(D~0) = 0. Therefore the characteristic properties will be manifested by flow 
lines (surfgces) and cylindrical surfaces ~(x, z) = const, orthogonal to the base plane. 

4. The nonlinear system of equations in partial derivatives, Eqs. (2.4)-(2.7), ca be 
integrated and a solution of the problem of Eqs. (2.4)-(2.9) can be obtained in the form of 
analytical expressions of the gas-dynamics functions in terms of the form of the compression 
discontinuity. To do this, in place of continuity equation (2.4) we use the equivalent equa- 
tion of conservation of the vorticity component along the flow (3.1) and transform to char- 
acteristic coordinates x, 4, z, where 4 is the flow line function D 4 = 0. In accordance with 

,the form of Eqs. (2.5), (2.6), (3.1) we take 4 = w/u. 

form 

(y,)~ + * ( y , h  = o; 

u~ + ~u~ = O; 

v = u(b,~ + ,y~);  

p ,  = --My, (v~ + ~v~). 

The system (2.4)-(2.7) takes on the 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

In the new variables the quantity y has become an unknown function, defined by the second- 
order equation (4.1). Integrating, we find Y4 = F(4' z -- 4x). Here the function F -I = 
~e/l + 4 2 characterizes the distribution of the flow component of vorticity. We note that 
D(z -- 4x) = O, i.e., the quantity 8 = z -- 4x together with 4 are functions of the flow lines. 

A second integration with consideration of conditions on the wing y = F(x, z) with 4 = 

4b(X, z) gives 

y = F(x,  z) • S r (~ ' ,  z - - ~ ' x )  d~ ~. 
*b (4.5? 

From Eqs. (4.2)-(4.4) we obtain 
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u = U(r  z - ~x) , .  w = ~ U(% z - Cx) ,  

{ * } (4.6) 
v = u F~ + ~pf~ + ,I' ( ~  - -  ~' )  r o , d ~ '  - - r ~  [( ,b)~ + ~ ( % ) A .  

*b 

To satisfy impermeability condition (2.9) we require that one of the following equalities be 
satisfied:F b = 0 or (~b)X + ~b(~b) z = 0. On the compression discontinuity the function ~ = 
T, while, according to Eq. (2.8), Y Sz(S x --A) -i. Satisfying condition (2.8) for v, which 
has the form of Eq. (4.6), we find the form of the function F on the discontinuity 

rs(x, z) -~ iT(x,  z ) ( S x x -  Szz) - -  (i - -  ~ ) S x z ]  -1. ( 4 . 7 )  

The pressure distribution is determined from Eqs. (4.4), (4.6) and has the form 

w 

p =p~ + S(vx + 9'vz) r (r z- 9'x) dg'. 

We denote by X('~, @), ~(~, @) the abscissa and applicate of the point of entry into the shock 
layer of the flow line along which ~ = Y, 0 = O. For determination of X, ~ we use the equa- 
tions ~ = Sz(X, ~X + @)/[Sx(X' P + 0) -- A], v = @ + PX(P, @). Then the functions U F in 

X 
the flow field are found from their values directly behind the discontinuity 

U(9 , z " 9  x) = us(%~ v),, F(9,, z - - g x )  = Fs(%, v)~ (4.8) 

where X = X(4, z -- ~x); v = z -- ~(x -- X). 

Finally, we obtain an analytical solution of the problem, representing the gas dynamic 
functions in the form of quadratures and functional dependences in terms of the form of the 
compression discontinuity S and the function F, which, according to Eqs, (4.5), (4.7), (4.8), 
satisfy the system of equations 

S (x, z) = f (x, z) + ,I r ( 4 ,  z - - g x )  d% ~ F = S ~ ( S ~ - - A ) - L  
r (4.9) 

r ( T , ,  z - T z )  = [ T ( S ~ x  - -  S . J  - -  ( t  - -  ~ D s j  -~  

The form of the function ~b(X, z), which has straight level lines, depends on the regime of 
flow over the leading edge of the wing. The following cases can be distinguished. 

A. In the vicinity of the sharp leading edge the windward surface has a form smooth in 
' e e 

plan (i.e., Ze(0 ) = ~; Fx, F z are continuous for y > Fe(x ) - Fix, ~Ze(X)]) , and the dis- 
continuity is attached to the edge. Then on the edge ~e = We/Ue, and the solution of the 
flow problem in the vicinity of the leading edge with the aid of power series analogous to 

those of [14] allows us to obtain 

t e 

Ue = A - -  F~  - -  z ~  (F~  + me),  

t e e e ' 2 (t_~M Ze~) J "4 
w~ (x) = =. 

(4.1o) 

Simultaneously, the form of the function F is determined on the leading edge. Thus, for a 

plane wing 
o 3 t ~ r 

2A~"weZeZ e [A( t  -~ W2e ) --  2~2WeZe] 
r [  l ( x )  = ~ , ,~  ( l + w . ) [ f l z e  (A2 4 ) _ 4 ]  ( 4 : 1 1 )  

For a wing with thickness considered the expression for Fe is very cumbersome and will not 
be presented. On the wing surface the functions Tb, F b are expressed in the form 

9b(X, z) = 9e(Z~),, Fb(X~ z) ---- Fe(Xe),, ( 4 . 1 2 )  

where ke(X, z) is the abscissa of the point of intersection of the flow line located on the 
wing with the leading edge, defined as the root of the functional equation 

z - -  ez~(%e) = ~e(%e)(x - -  %e~ ( 4 . i 3 )  

B. The discontinuity is attached to a leading edge having a cusp at the tip: ~e(+0) =--~e(-O) 
r 0. In this case in the central portion of thewing for Izl_<~e(+O)x there is a sheaf Of low lines 
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which pass through the tip x = z = 0. Hence for these Ze=0, 0b=Z --~bX=0,~b=Z/X. 

Moreover, F b = 0, since the curvature of the discontinuity is singular at the tip. In the 
cantilevered portions of the wing at ~e(+0)x < ]z] < ~Ze(X) the functions Xe, }b, Fb are 
defined by Eqs. (4.10)-(4.13). 

C. The discontinuity is attached to the wing only at the tip and detached from the edge. 
Then all flow lines on the wing pass through the tip and on the entire wing surface ~b = z/x, 

Xe = Fb = 0. 

We also note that the denominator in Eq. (4.11) vanishes at the point where the discon- 
tinuity detaches from the edge, where [Zel = 2/~/A-f--4. Consequently, in the vicinity of this 
point there is intense formation of vorticity oriented along the flow. 

5. If we transform to new independent variables x, X, z [5], then the function F is 
eliminated from the solution. Thus, system (4.9) for the form of the discontinuity takes on 
the form 

f dZ S(x,z) F(x,z)+ ~ ( z , v ) [ t + ( z - - z ) ~ ( z , ~ ) ]  '; ( 5 . 1 )  

Xe 

u s = A -- Sx, Y = --Sz/us, v = z -- Y(X, v)(x -- X). As an example we will consider the solution 
of the converse problem with specified compression discontinuity surface of conical form in 
the vicinity of the symmetry plane z = 0. We introduce the conical variables ~ = y/x, ~ = 
z/x. At ~ << 1 we have 

~ $4~4 + . . .  ~1~ = So  - -  ~" S ~  2 - -  - $  ,~ 

where So, S~, $4, ... are specified constant coefficients. Solution of system (5.1) reveals 
that the form of the body corresponding to the conical discontinuity is also conical and 

S~ 

I~~A--So_S2;~_S21nA_So �9 By integrating it is simple ~b ----Fo-- ~f2~ 2 -  ~t F~4 + . . . .  where F o = S O 
(A - -  S o - -  $2)2 

to obtain subsequent coefficients F2, F~, ..., which are expressed in terms of So, S~, $4, 
.... For example, to calculate the coefficient F2, aside from So, $2, it is necessary to 
specify $4 in the next term of the expansion of the discontinuity form. 
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THREE-DIMENSIONAL DIFFUSIVE BOUNDARY-LAYER PROBLEMS 

A. D. Polyanin UDC 532.72 

i. PROBLEM FORMULATION. CHOICE OF COORDINATE SYSTEM 

Consider three-dimensional viscous incompressible laminar flow past a solid or liquid 
particle of arbitrary shape with convective diffusion to the surface. It is assumed that the 
Peclet number Pe = aUD "I is large; here a is the .characteristic dimension of the particle 
(it is usually the radius of an equivalent sphere by volume), U is the characteristic flow 
velocity (at infinity), D is the diffusion coefficient. It is also assumed that concentra- 
tion C, is constant at the surface and away from it, equal to C s and C~, respectively, and 
the flow field is determined from the solution of the corresponding hydrodynamic problem of 
the flow past the particle. 

Orthogonal curvilinear coordinate system in 6, ~, % connected to the body surface and 
streamlines is used in the analysis as in [i, 2]. The directions of unit Vectors at any point 
M in the surrounding fluid are given by e~, eq, e I (Fig. i). The unit vector e6 is deter- 
mined by the direction of the normal to surface of the particle passing through the point M; 
the unit vector e n is given by the direction of the projection of the velocity vector at the 
point M on the plane perpendicular to e~; the unit vector e I is chosen such that the system 
of unit vectors e<, e n, e I is a right-handed orthogonal triad (Fig. i). The origin of the coor- 
dinate system and the procedure for computing curvilinear coordinates (i.e., the dependence 
of metric tensOr components g~, g~n' gZZ on ~, ~, %), are chosen from the point of view of 
convenience in each particular case; for concreteness, we further assume that the surface of 
the particle is given by a fixed value [ = 0. In such a coordinate system the fluid velocity 
vector at each point is given by v = {v~vq, 0}. 

The equation of continuity for an incompressible fluid has the form 

d i v v = - ~  ~-~ + - ~  vn =0.  (1.1) 

The function 9(6, q, l) is determined as the solution to the system 

0~ __ 1 /  g 0~ _ _ V ~ l / ' g  " (1.2) 

Then the equation of continuity (i.i), which coincides with the condition for integrability 
of the system (1.2), is automatically satisfied. The constant of the integration in Eq. 
(1.2) is chosen such that the function ~ becomes zero at the surface. 

The surface ~(~, q, ~) = const wholly consists of streamlines. The function ~ has a 
simple physical meaning: It is the three-dimensional analog Of stream function. In the plane 
and axisymmetric cases ~ coincides with stream function. 

In nondimensional variables the equation of stationary convective diffusion and boundary 
conditions in curvilinear coordinate system ~, q, I are written in the following form using 
Eq. (1.2): 

n) + o n  \ + ; -- -- ~ [ (1.3) 

= O~ c = O; ~--~ oo~ c-+ 1~ (1.4) 

c = ( C ,  - -  C ~ ) / ( C ~ - -  C~), Pe = a U / O ,  g = g ~ g ~ g ~ ,  
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